The SUSY-Yukawa sum rule

Testing weak scale naturalness at the LHC

Monika Blanke

Brookhaven Forum 2010: A space-time odyssey BNL – May 26, 2010

Goals for the next 15 minutes

- introduce SUSY-Yukawa sum rule that allows to test supersymmetric stabilisation of the weak scale
- Denchmark study for LHC prospects to test the sum rule
 - here: focus on lighter stop and sbottom masses
 - > can be precisely determined at the LHC
 - progress on stop mixing possible
 - sbottom mixing and heavier masses difficult

MB, D. Curtin, M. Perelstein, 1004.5350

Introduction: SUSY cancellation of quadratic divergences

• hierarchy problem: loop contributions of SM particles (e.g. tops) let the Higgs potential depend quadratically on the cut-off scale

- new particles (stops) with sub-TeV masses required to cancel these contributions
- couplings to the Higgs boson have to be equal

How to access the stop-Higgs coupling at the LHC?

We want to measure the coupling $hh ilde{t}_{L,R} ilde{t}^c_{L,R}$:

direct measurement not feasible at the LHC

How to access the stop-Higgs coupling at the LHC?

We want to measure the coupling $hh ilde{t}_{L,R} ilde{t}^c_{L,R}$:

- direct measurement not feasible at the LHC
- EWSB ➤ contribution to stop mass matrix

The stop mass matrix

• stop mass matrix: $\mathcal{L} = (\tilde{t}_L^c, \tilde{t}_R^c) \mathcal{M}_t^2(\tilde{t}_L, \tilde{t}_R)$

$$\mathcal{M}_t^2 = \begin{pmatrix} m_L^2 + m_t^2 + \Delta_u & m_t(A_t + \mu \cot \beta) \\ m_t(A_t + \mu \cot \beta) & m_R^2 + m_t^2 + \Delta_{\bar{u}} \end{pmatrix}$$

rotation to mass eigenstates via

$$\begin{array}{lll} \tilde{t}_1 & = & \cos \theta_t \, \tilde{t}_L + \sin \theta_t \, \tilde{t}_R \\ \tilde{t}_2 & = & -\sin \theta_t \, \tilde{t}_L + \cos \theta_t \, \tilde{t}_R \end{array}$$

ullet then re-express \mathcal{M}_{11}^2

$$m_L^2 + \frac{m_t^2}{m_t^2} + \Delta_u = m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t$$

analogously for sbottom system

The SUSY-Yukawa sum rule

eliminating m_L^2 yields the SUSY-Yukawa sum rule $(m_b \rightarrow 0)$

$$m_t^2 + (\Delta_u - \Delta_d) = m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t - m_{\tilde{b}_1}^2 \cos^2 \theta_b - m_{\tilde{b}_2}^2 \sin^2 \theta_b$$

where
$$\Delta_u - \Delta_d = m_Z^2 \cos^2 \theta_W \cos 2\beta \approx -m_W^2$$

- sum rule expresses stop-Higgs coupling in terms of measurable quantities (masses, mixing angles)
- SUSY weak scale stabilization (in principle) testable at the LHC!

... and what about radiative corrections?

- above derivation valid at tree level
- to quantify effect of radiative corrections, define

$$\Upsilon = \frac{1}{v^2} (m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t - m_{\tilde{b}_1}^2 \cos^2 \theta_b - m_{\tilde{b}_2}^2 \sin^2 \theta_b)$$

• SUSY tree level prediction: $\Upsilon_{\text{tree}} = 0.28 \pmod{\beta}$ a few)

 SuSpect scan over pMSSM parameter space yields

$$0 \lesssim \Upsilon \lesssim 1$$

'generic' prediction: $|\Upsilon| < 16\pi^2$

 can be narrowed by measuring some SUSY masses (see later)

Parameters to be determined

masses

 $m_{ ilde{t}_1}, m_{ ilde{t}_2} \ m_{ ilde{b}_1}, m_{ ilde{b}_2}$

mixing angles

 $\sin heta_t \\ \sin heta_b \ ext{(usually small)}$

 $\tan \beta$ (minor impact)

additional information helpful (to pin down radiative corrections)

Parameters to be determined

masses

mixing angles

 $\sin \theta_t$ $\sin \theta_b$ (usually small) $\tan \beta$ (minor impact)

additional information helpful (to pin down radiative corrections)

Our benchmark scenario - main virtues

ightharpoonup study $pp o ilde{g} ilde{g} o bb ilde{b} ilde{b}_1 ilde{b}_1 o 4b+
ot\!\!\!/ _T$ and $pp o ilde{t}_1 ilde{t}_1^c o tar{t}+
ot\!\!\!/ _T$

$$\tilde{g} \stackrel{b}{\underset{b}{\tilde{b}_{1}}} \tilde{b}_{1} \tilde{\chi}_{1}^{0}$$

(parton level analysis using MG/ME and BRIDGE)

Gluino pair production – $4b + E_T$

It's all about finding edges!

- ullet consider $pp o 2 ilde{g} o 2b + 2 ilde{b}_1 o 4b + E_T$
- $\sigma(pp o 2\tilde{g}) \simeq 11 \, \mathrm{pb} \, \, \mathrm{for} \, \sqrt{s} = 14 \, \mathrm{TeV}$
- with $\mathcal{L} = 10 \, \text{fb}^{-1}$: $\sim 4800 \, \text{signal events}$, SM background negligible!

however: combinatorial background – which b-jet is which?

several possible ways to get rid of 'wrong' pairings (e.g. ΔR)

> we always require **two independent methods** to yield **consistent results** (otherwise measurement is rejected)

Mass determination for \tilde{g} , \tilde{b}_1 and $\tilde{\chi}^0_1$

- ullet M_{bb} invariant mass endpoint can easily be recovered
- need two more edges to pin down all masses $\succ M_{T2}^{(2,2,0)}$, $M_{T2}^{(2,1,0)}$

Barr et al, hep-ph/0304226; Burns et al, 0810.5576

> combining those, we obtain the mass measurements

	68% C.L.	theory
$\overline{m_{\tilde{b}_1}}$	(316,356)	341 GeV
$m_{ ilde{g}}$	(508,552)	525 GeV
$m_{ ilde{\chi}^0_1}$	$(45^{(*)},115)$	98 GeV

(*) LEP lower bound

Stop pair production – extracting $m_{ ilde{t}_1}$

- ullet analyze $pp o 2 ilde{t}_1 o 2t+
 ot\!\!\!/ t_T$
- $\sigma(pp o 2 \tilde{t}_1) \simeq 2 \ {
 m pb} \ {
 m for} \ \sqrt{s} = 14 \ {
 m TeV}$
- impose standard cuts & use hadronic tops (following MEADE, REECE, HEP-PH/0601124)

 $\tilde{t}_1 = \tilde{\chi}_1^0 \\
\tilde{t}_1 = \tilde{\chi}_1^0$

- with $\mathcal{L} = 100 \, \mathrm{fb}^{-1}$: $S/B \simeq 14$, $S/\sqrt{B} = 140$
- straightforward to extract

$$(M_{T2})_{\rm max}(\chi=0) = (340 \pm 4) \, {\rm GeV}$$
 theory: 336.7 GeV

• using our previous $m_{\tilde{\chi}^0_1}$ measurement we find (68% C.L.)

$$356\,\mathrm{GeV} \leq m_{\tilde{t}_1} \leq 414\,\mathrm{GeV}$$
 theory: $371\,\mathrm{GeV}$

So what did we learn?

ullet rewrite Υ as

$$\Upsilon = \underbrace{\frac{1}{v^2}(m_{\tilde{t}_1}^2 - m_{\tilde{b}_1}^2)}_{\Upsilon'} + \underbrace{\frac{\sin^2 \theta_t}{v^2}(m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)}_{\Delta \Upsilon_t} - \underbrace{\frac{\sin^2 \theta_b}{v^2}(m_{\tilde{b}_2}^2 - m_{\tilde{b}_1}^2)}_{\Delta \Upsilon_b}$$

- our measurements yield
- $\Upsilon' = 0.53^{+0.20}_{-0.15}$

theory: 0.35

- ullet no information on $\Delta \Upsilon_t, \Delta \Upsilon_b >$ lepton collider
- ullet however: much more accurate prediction for Υ

Summary

- SUSY-Yukawa sum rule relates stop-Higgs coupling to stop and sbottom masses and mixing angles ➤ measurable quantities
- verifying (or falsifying) the sum rule means testing SUSY as the origin of the weak scale stabilization
- full measurement will have to wait for lepton collider
- We can make significant progress at the LHC in some regions of parameter space:
 - masses of \tilde{t}_1 , \tilde{b}_1 , \tilde{g} and $\tilde{\chi}^0_1$ can be precisely measured \succ more accurate prediction for the sum rule
- $oldsymbol{\circ}$ we also developed new techniques to reduce combinatorial backgrounds in M_{T2} analyses

Back-up slides

The stransverse mass M_{T2}

Barr, Lester, Stephens, hep-ph/0304226

SUSY events complicated by

- two missing particles
- LSP mass unknown
- > the best we can do
 - use trial LSP mass χ
 - minimize over all possible LSP momentum configurations

 \triangleright define the stransverse mass M_{T2} by

$$M_{T2}(\chi) = \min_{\boldsymbol{p}_T^{(1)} + \boldsymbol{p}_T^{(2)} = \boldsymbol{p}_T} \left\{ \max\{m_T^{(1)}, m_T^{(2)}\} \right\}$$

edge of distribution: $M_{T2}(\chi)_{\rm max}=rac{M^2-m^2}{2M}+\sqrt{(rac{M^2-m^2}{2M})^2+\chi^2}$

Extension: the subsystem M_{T2}

Burns, Kong, Matchev, Park, 0810.5576

for n > 1 step decay chains:

generalize M_{T2} concept to subsystem $M_{T2}^{(n,p,c)}(\chi)$ (n: grandparent index, p: parent index, c: child index)

ightharpoons $M_{T2}^{(n,p,c)}(\chi)$ endpoint yields relation between m_n , m_p and m_c

Definition of benchmark scenario

parameter	EWSB scale value	
M_1	100 GeV	
$M_{2,3}$	450 GeV	
A_t	390 GeV	
μ	400 GeV	
aneta	10	
M_A	600 GeV	
$m_{ ilde{e}_{L,R}, ilde{ au}_{L,R}, ilde{q}_L ilde{u}_R, ilde{d}_R}$	1000 GeV	
$m_{ ilde{Q}_L}$	310 GeV	
$m_{ ilde{t}_R}$	780 GeV	

SM backgrounds to $4b + p_T$

Background	Generator	$\epsilon_{ m b}\sigma$	$\epsilon_{ m b}\epsilon_{ m kin}\sigma$
$4j + (Z \to \nu \nu)$	MGME, ALPGEN	10 fb	
diboson + jets	_	< 10 fb	
$tt \to n\tau + X$	MGME, BRIDGE	$21.6\mathrm{pb}$	25 fb
t	_		≪ 30 fb

assumed b-tagging efficiencies: 0.6 (b), 0.1 (c, τ) , 0.01 (light jet)

Some technical details

- SUSY spectrum and decays calculated using SUSY-HIT
- \bullet parton-level analysis for $\sqrt{s}=14\,\mathrm{TeV}~pp$ collisions
- Monte Carlo event samples generated by MadGraph/MadEvent
- fully decayed final state obtained with BRIDGE
- leading order analysis, using CTEQ6l1 pdf sets
- Gaussian smearing of jet energies

$$\frac{\Delta E}{E} = \frac{50\%}{\sqrt{E[\text{GeV}]}} \oplus 3\%$$

to simulate detector response